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SUPPRESSION OF TURBULENCE IN THE CORES OF CONCENTRATED VORTICES 

V. A. Vladimirov, B. A. Lugovtsov, 
and V. F. Tarasov 

UDC 532.527+532.517.4 

i. The problem of the motion of vortex rings has intrigued researchers for more than a 
century now [i]. On the initiative of M. A. Lavrent'av, the Institute of Hydrodynamics of 
the Siberian Branch of the Academy of Sciences of the USSR has been conducting experimental 
and theoretical studies for several years on this effect and other rotational flows of 
liquids and gases [2]. A mathematical model for the description of the motion of turbulent 
vortex rings has bean proposed on the basis of an analysis of the experimental facts [3, 4]. 
This model rests on the hypothesis that the turbulent nature of the motion and the transport 
of a tracer impurity by it can be described by means of scalar coefficients of turbulent 
viscosity ~ and turbulent diffusion x that vary with time but do not depend on the space 
coordinates. The additional assumption of flow self-similarity, which is highly consistent 
with the experimental results, has made it possible to calculate the structure of a vortex 
ring in the vanishlng-viscosity limit [5]; the theory in this case does not contain any 
empirical constants. However, a comparison of the calculations with the existing experimental 
results discloses a significant discrepancy in the vicinity of the core of the vortex ring. 

It is now clear that the principal cause of this discrepancy is the assumption of turbu- 
lence "uniformity" throughout the vortex volume. The results of qualitative experiments and 
certain theoretical considerations [6] indicate that the core of the vortex ring is almost 
completely devoid of turbulent tracer transport (the "laminar core" effect) in connection 
with strong turbulent tracer transport in the atmosphere of the vortex ring. This turbulence 
suppression is caused by the presence in rapidly rotating flow of a singular "elasticity" 
associated with the gyroscopic behavior of the fluid particles. 

The unsteadiness of the flow in the vortex makes it exceedingly difficult to study the 
effect discovered in [6]. In this article we describe experiments by which it is possible to 
observe a similar effect under steady-state conditions; we also present a qualitative explana- 
tion of the effect and propose simple models of the turbulent stresses and tracer transport 
in the cores of line and ring vortices. 
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Fig. 1 

2. We give the results of experiments that permit observation of the turbulence sup- 
pression effect under stead~state conditions. We investigate Couette-type flow between 
cylinders, the inner one in 7~e form of a grid structure. The experiment entails observing 
the penetration of turbulenc~from the space between cylinders ("gap") into a fluid rotating 
in the inner cylinder. The outer (solid) cylinder in this case is the lateral wall of a 
water-filled container with a diameter of 17 cm. The grid structure of the inner cylinder 
is assembled from vertical rods, the number of cross sections of which is varied between defi- 
nite limits. The outer and inner cylinders can be rotated independently with angular veloc- 
ities ~2 and ~:. The experiments show that the central part of the flow contains a rigidly 
rotating (with velocity ~) zone. Typical top-view photographs of the flow are shown in Fig. 
i. The flow is visualized by means of aluminum powder suspended in the fluid and a slit 
light source for observation of the horizontal cross section of the flow. This visualization 
technique works on the directional scattering of light by powder "flakes" oriented under the 
action of the velocity gradients [7, 8]. The photographs clearly reveal the "laminar core" 
around the flow-rotation axis and the turbulence "penetrating" that core from the gap. The 
quantities ~, fl~, ~ have the following values (rps): a) 0.22, -1.05, 0; b) 0.4,--0.88, 0.26; 
c) 0.89, --0.38, 0.83; d) 1.34, 0, 1.33. In order to maintainaroughlyequal turbulence strength 
in the gap the difference ~ -- ~ is made approximately the same in every case. The quantity 

increases monotonically from Fig. la through Fig. Id. In Fig. la, ~ = 0, and the entire 
flow is turbulent (no "suppression"). With an increase in ~ the radius of the "laminar core" 
increases, corresponding to ever-increasing "suppression." Hence we infer that the degree 
of "suppression" is proportional to the mean vortex size. This experimental result can be 
corroborated by the following technique. We consider the flow corresponding to Fig. la, in 
which turbulence is not suppressed. If now we increase ~ without changing ~2, the turbulence 
strength in the gap increases. However, a velocity ~ # 0 develops simultaneously, and a 
clearly visible"laminar core"appears. Thus, the emerging rotation"suppresses"even the strength- 
ened turbulence in the gap. 

We have also visualized the investigated flow by means of a passive dye tracer. After 
the latter is injected into the gap between the solid wall and the grid, the flow is observed 
to become rapidly colored everywhere except in the "laminar core" (Fig. 2). In the regime 
corresponding to Fig. la the entire fluid is rapidly colored. Direct measurements of the 
turbulent tracer-transport velocity yield diffusivity estimates from 1 to i0 cm2/sec. 
Turbulent tracer transport is not observed in the "laminar cores." 

These qualitative results do not depend on whether or not the inner cylinder has a bot- 
tom that rotates with it. The induced secondary flows are very weak. We call attention to 
three more facts. First, the interfaces between the turbulent and nonturbulent fluids in 
Fig. 1 are steady. Fluid is not entrained into turbulent motion across these interfaces, or 
the process of "laminarlzation" of the turbulent fluid takes place with equal velocity. 
Second, this experiment evinces the fact that even moderately small Rossby numbers are suf- 
ficient for the suppression of turbulence by rotation [8, 6]. Third, the experiments can be 
regarded as a crude laboratory model of turbulence in the central zones of atmospheric vor= 
tices (as in the center of a tornado or the "eye" of a hurricane, etc.). 

3. The experiments described above for observing turbulence-suppression effects, like 
their counterparts for vortex rings, can be explained in terms of the"elasticity" proper- 
ties of rotational flows and the wave nature of the fluctuating motion [6, 9]. Such quali- 
tative notions provide a certain basis for modeling of the turbulent stresses and tracer 
transport in flows with concentrated vortices. 

We consider a turbulent rotationally symmetric flow with circular mean-flow streamlines. 
This flow situation represents a first approximation of flows in the vicinity of the "laminar 
core." For definiteness we specify flow near the core of a vortex ring, deferring the flow 
self-similarity problem for now. 
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Fig. 2 

We adopt the hypotheses of the existence of coefficients of turbulent viscosity v = v(r, 
t) and turbulent diffusion ~ = • t) 

<uv> = v(OU/Or- U/r), <cv> ' =  • 

where the angle brackets denote the ensemble average, U, u, C, and c are the mean and fluctu- 
ating fields of the angular velocity component and the concentration, and v is the fluctuation 
component of the radial velocity. The equations for the mean fields U(r, t), ~ -- 3U/~r + 
U/r, and C(r, t) have the form 

t~U/Ot = vale~Or + Ov/Or(aU/Or -- U/r), 
aC/Ot = 8/Or. (xOC/Or). 

For the formulation of models in this scheme it is sufficient to indicate the methods of 
determination of the functions u(r, ~) and M (r, t). We denote by ro the radial dimension of 
the "laminar core." According to the experimental results of [6], the function ~ has a more 
or less sharp Jump at ro. In the "laminar core" the tracer diffusion is molecular, ~ = Xm, 
while outside the core all that can be said is that ~ >> Wm' Following the basic ideas of the 
model in [4, 3], we assume that outside the core ~ settles rapidly into a constant value xo. 
The simplest relation of this kind is a step function: 

(r,t) IXmfor r<r0, 
= [Uo for r > r  o. 

In accordance with the general concepts of turbulent transport mechanisms it is reasonable 
to expect that the function v(r, t) will behave similarly: 

v (r, t) = {vl 
Dr r < r0, 

% for r>r 0 

The quantity 9~ cannot a priori be set equal to the molecular viscosity, because of the pos- 
sibility of momentum transport by the wave motion [i0, ii]. On the basis of general considera- 
tions 9~ < ~o. These expressions correspond to the simple physical notion that for r > ro 
rotation does not affect the turbulence characteristics and for r < ro its influence is so 
strong that fluctuation motion exists only in the form of "weak" turbulence. Without going 
into the method of determination of ro and other details of the models formulated here, we 
note that numerical calculations give satisfactory results for the tracer transport process 
and unsatisfactory results for the Reynolds stresses. The latter fact is attributable to 
the strong inception of the circulation-excess effect [12], i.e., large negative values of 
the vorticlty. This kind of flow is unstable. 

The model described below comprises a method of smoothing the step functions on the 
basis of the concepts of flow "elasticity" [6, 9]. Such concepts have been used ex~ensively 
for some time now to model turbulen~ stresses in stratified as well as in curvillnear flows 
[I0, 13-19]. 

It is customary in papers on these problems to speak of the stabilizing or destabilizing 
action of stratification or mean curvature, characterizing these attributes by quantities 
taken from linear inviscid problems. For example, it has been assumed [I0, 18] that the tur- 
bulent viscosity coefficlen= in plane-parallel stratified flows is a single-valued function 
of the Richardson number Ri. The form of this function is de=ermined from the conditions of 
matching with experiments and elementary physical considerations. A direct analog of the 
number Ri in circular flows is the quantity [9] 
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Here k and m are the wave numbers of the disturbance in the axial.and angular directions. A 
direct translation of the results of [i0, 18] to the case of circular flows gives 

v = ~ (t + k~J)-"~, • = • (t + kv/) -~2 (3. l) 

with positive constants ~o, no, kt, ks, ~i, ~a. It follows from physical considerations that 
tracer transport is more strongly "suppressed" than momentum transport, so that ~i > ~ x. This 
characteristic is related to the possibility of a "wave" mechanism of momentum transport, 
whereas the tracer cannot be transported by wave motion [10, ii]. Another possibility is the 
analogous approximation for the mixing length 

l = 1 o (1 --{- ks  J )  -~ 3  ( 3 . 2 )  

with its subsequent use for modeling of ~(r, t): 

= 1210U/Or - -  U/rl. ( 3 . 3 )  

Outside the core of vorticity J(r) decays rapidly, so that ~,, z o, Z, yield the values of the 
transport coefficient in the atmosphere of the ring. The ratio k/m entering into J has the 
significance of the ratio of the turbulence space scales in different directions. The choice 
of a particular value for this ratio is inconsequential, because the constants kl, kl, k, are 
determined by matching with experiment. 

We could continue the list of possible approximations and de=ailing of their argumenta- 
tion. However, this activity is practical only when adequate experimental evidence is 
available. At the present time there is only one paper [20] reporting measurements of the 
time dependence of the averaged parameters of a vortex ring, while measurements of the tur- 
bulence characteristics are totally lacking. We therefore limit our discussion to the obser- 
vation that numerical calculations indicate the possibility of matching with =he data of [20] 
within =he context of any one of the models (3.1)-(3.3). 

4. We conclude with a formula=ion, based on,he experimental facts and considerations 
set forth above, of the problem of self-slmilar =urbulent vortex rings in =he vanishing- 
viscosity limit [5] with regard for the dependence of the turbulent viscosity coefficient 
on the coordinates. We proceed from the assumption that the Reynolds stresses are represent- 
able in the form 

t * (0u i Ouh\ 
<u,u~> = - z  <~r> ~,~- ~,  (t, ~) k ~  ~ ~ )  

In a cylindrical coordinate system with axial symmetry, neglecting molecular viscosity, we 
obtain the following equation for the azimuthal component of the vorticity vector ~ for the 
averaged flow: 

- -  ~ /  t a d 'zav v~), (4.1) 

where ~ is the stream function, v z --(i/r)(~P/3r) and v r=-(I/r)(3~/3z) aretheaxlal and radial 
velocity components, and dzz , drz , drr are the corresponding components (multiplied by two) 
of the strain-rate tensor: 

c3v z Ov z CgVr. Ov r 
d =  = 2 ..g-f; d ~  = "g7 + -ffz ' d , . /  = 2 .-g-/. 

Considering the motion to be self-similar with governing parameter Po([Po] = La/T) 
we obtain p8/4 

I - o - . 

[3, 4], 

The time dependence of the turbulent viscosity coefficient is determined by dimensional 
analysis and has the form p~/s 

%', (t, r) = Zo ~ ~ (x, y), 
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where >-o is a constant and X(x, y) .< i. The quantity Xo is small. It is reasonable, there- 
fore, to consider the limiting case %o § 0. We make a change of variables, putting 

 -LU ' TM " =  ' 

t ~ 

This change corresponds not only to elongation, but also to transformation to a coordinate 
system attached to the vortex ring. The quantity ~o is determined by the requirement that 
the maximum of ~ lies on the line ~ = 0. 

In these variables Eq. (4.1) takes the form 

0 aco 

"/~ ~] / (4.2) 

+ + = on d~ ~ -- d~ ~ + -f-j -~- q~n L o~ a~ an 

The boundary conditions required for solving this equation coincide with the conditions in 
[53. 

In this coordinate system the lines of constant ~ = ~/~ almost coincide with the lines 
= const and are close to circles near the maximum of ~ for large values of B. It is reason- 

able to assume, therefore, that the dependence of X(~, n) on the coordinates will be well 
described by one of the above-considered approximations of the turbulent viscosity coeffi- 
cient for flows with circular streamlines. 

The following quantity can serve as an analog of the Richardson number for flow in the 
vicinity of the core of a vortex ring: 

f = 2 U ~  

where U -- /v r + Vz; R is the radius of curvature of the streamline passing through a given 
point (in a coordinate system moving with the vortex); and dTn is twice the component of the 
strain-rate tensor (T is the tangent vector, and n is the normal to the streamline). It can 
be shown that 

d,,, = f~ -- 2U/R. 

Considering the qualitative character of the arguments used in selecting the form of 
the turbulent viscosity coefficient as a function of the coordinates, it seems logical to 
choose the simplest function. Accordingly, we assume that u, is constant on the isolines 

= ~/~ = const and 

~(~, ~) = ~(o.) = [~ + ~ z ( ~ ) ] - ~ ,  ( 4 . 3 )  i 

w h e r e  I ( ~ )  i s  g i v e n  by  t h e  e q u a t i o n s  

~ ~ = r (~) 
I (~)  ~ (~ _ ~)~ ,  s ( o ) ,  

Here the integration is carried out over the domain delineated by the closed llne fl - coast. 

Integrating (4.2) over a domain with boundary delineated by a certain closed streamline, 
for any ~ we obtain ... 

( 
+ + + = 

where dZ is an element of length of the streamline and n is the unit normal to the stream- 
line. Now, comparing the limiting transition B § - and making usa of the fact that ~ § ~(~) 
in that transition, we obtain 
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where 

Here the integration is carried out over the domainbounded by the closed streamline. Thus, 
in the limit ~ § -, as in the constant-vlscosity case, for the determination of the structure 
of the vortex ring we arrive at the problem of matching the potential invlscid flow outside 
the vortex atmosphere with the rotational inviscld flow inside the atmosphere [5, 2]. At the 
boundary of the atmosphere the conditions of continuity of $ and A~ must hold, with S(0) = 0. 
The variable turbulent viscosity ~($) entering into Eq. (4.4) is given by relation (4.3). 
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